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Sonic boom - example of spiked Rise phase of a sonic boom

signature (leading shock in the N.wave)
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What is molecular relaxation?

Nitrogen molecule _ =. _ _ "_"_ _ "_' _ _ -=

Vibrational _>'S _""" = = =_
energy
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Number in excited state
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But this is so only for thermodynamic equilibrium.



Parameters characterizing AE = Quantum energy gap between ground and
first excited vibrational state

a relaxation process: k = Boltzmann's constant

When gas is in equilibrium:

• a relaxationtime Averagekineticenergypermolecule
! (translation:d plus rotational) = -_kT_qi

"rrcl_x
Fraction of molecules in

• a sound speed inorement first excited vibrational state = e-axe/kT,'_
For gas not In equilibrium, define
apparent temperatures Ttr,rot and Tvib

/k_: = Cprop,froz -- Cprop,eq such that

Average kinetic energy per molecule
(translationalplus rotational) s,= _kTtr,ro_

Fraction of molecules in
first excited vibrational state = e -AE/kT''t'

Two relaxation processes for air:
Relaxation equation:

dTvlb 1 ( )
----_ Tit,rot- Tvlb

• Vibrational relaxation of oxygen molecules dt "rr_lax

or ( d 1 ){ T '_ d TVibrational relaxation nitrogen molecules
t_ +_',o,,=.tt._'_- z,.,o<j=-_ <,.,o<



Relaxation times very sensitive to humidity!

Very low humidity means internalenergyper unitmass
very long relaxation times.
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to' to,) specific heat ratio: 7 = % = 1 + _.R
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sound speed: = [7__T]t/2l_: ll2xr_ Cprop

Cprop,froz _ Cprop,eq "_" AC

to Ac = sound speed increment
,,,_ _ assoeiatedwitha relaxationprocess
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Fraction of air molecules
that ate water molecules



Frequency dependence of a single relaxation process Atmospheric propagation:
Absorption eoeffici/_nt

" - absorption per wavelength (nepers per meter)
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One-way propagation equation E=_,c,,g,,_=,,=,0_,_m
3%¢ Structure or Shxk Waver at Large Distances from Bo¢ll=_ Tmvclllng _t Hh_h

for a dissipative medium s_,J,
[G. M. Lilley, 5th ICA, Liege, Belgium, 1965]

(Burgers' equation)
The Taylor rise time _'ri_oof the shock wave is

• ' given as the time over which 0.9 of the overall

Cgp C_.,qp /3p Cgp 6q2p jump occurs. Thus we find
o_+_ + p_o_ 6_Zx_=o

6po5 f 9.8po6wrlere _=°'= P.t_ .===tedto"_-.hJ

2ee= where2,oe=
¢.,$ ,...p

In estimating diffusivity _ it is necessary to know

the value of the bulk viscosity accurately. LighthiU

'If you neglect nonlinear term, assume t and x (SurveysinMechanicsarticle, 1956)has argued

dependence as that the presence of minute traces of water vapotlr
in air effects the vibrational energy exchange

e-i_tei(_/vr, h)=e -az between tile oxygen and water vapour molecules

and this results in exceedingly large values of #bull,.

yOU get classical absorption coefficient But for perfectly dry air `ubuZk_ `U.(?????) Thus

• W2 depending on the value of `ubulkwe find the shock
_el = -_ rise time can vary from 4 ,us to 40 ,us for a weak

t..

sl,ock wave of 1 lb/ft "_(50 Pa) pressure jump.



-. Linear dispersion relation with relaxation included

Tlsza's observation (paraphrased)
._a_ w iw_-v

Physical Review, 1942 ck = w + z_-_6 + _ _(Ac)_, 1 -- iw'r_
blg bill small V Imall

• .a , ,¢-'-_._, , _kc'rv
At sufficiently low frequencies, w = [elk- _k 6- t¢2..fl_e)_ 1---"_"_.

the effect of any given relaxation process br, bill small _ $,.all .

How to derive transient wave equation
is equivalent t¢_ from dispersion relation

what results from increasing the bulk viscosity by 0 0

-z'_ --* 0"7; _k --, c.7"-_

Introduce internal auxiliary variables, Pl and p2:

i--ikcrv p "-' --P_

op op_ op Op.
cr_z =-p_+crv Oz ; _v_ =Pv+rvc9 t

Perfectly dry air at low fiequencies will have a Nonlinear correction (Wltftbam s rule):

very large balk viscosity! dc /3p
[j _+_+ _p = _+ p_



One way nonlinear pr.opagation system

with relaxation included Molecular relaxation incorporated
• • o •
into sonic boom wavef'nrl'n nrethettons

a generalization of Burgers' equation llurgers t equation with added molecular relaxation t_rm:

o.ro+_]@-:_+_<..:,t..=o a+:a,,=.,_.,,:,°
-_ + L pc J ax ox" _v ox et ex I
bII biI Imall imall imlll [

molecular relaxation term

cl_sical absorption term

supplemented by relaxation equations (v = 1, 2) nonlinear stceperdng term

o'rv_=--pv+5"rv_; ¢oCpled wtth r,laxatioa equations:

v = O a, Nz
or

6p Dpv
= Pv + "re "Dr



. •..... . ..... • ...... ..

Similitude Solution

for waveform in vicinity of shockfront

(in tradition ofG. I. Taylor and R. Bucker) •
_arlv nnrtion or sonic boom wave(orm

primary (defendable somewhat)assumption:
'l'heoretleal predictions based on numerical solution

p(Z, t) _---F(Z -- _h'/;) ; Pv (Z, "/:) = .Fv (Z -- _al, f:) or augmented Burgers' equation set matglted to

asymptotlu boundary conditions: P
reduces coupled pde's to coupled ode's o.0s_

A$_lllploll¢ [Oflll

Nominal shock location where x - _h_:= 0 /

To describe shock profile it is sufficient to seek so- _'
lutlon corresponding to a net jump: 0

_'(_)--,0 as _--, oo
Asyrapotc Asymptotic

F(_)-_Pubas _--, -oo .o,_.o.,or.o.,i,,0_.00_,_.010,,o.equations

Complete set of boundary conditions to pil, down
the solution of the three coupled ode's requires a
nontrtvlal derivation, l",liddle rise phase: O, rdasatlon domhmtes

Later rise pllase: N, relaxation dotnhlates

Shock speed VBhemerges as part of the solution.

[l,,.. st.t./eav [ [l,o,_.st.,_/_v I

[ , j .... . ................................................. ........



Early history of shock 'woveformt
. . Definition of rise time asused ilere

(effects of various terms in the propagation equations)12o based on steady stateshock overpressure *tI_sh"

the time for pressure to jump from 10% to 90% of Psh
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Computedresultsfor when

Notpressure jump is 100 Pa
Temperatureis 20° C
Relative humidity is 10%
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Rise times of actual sonic boom waveforms Concluding Remarks

recorded at the ground
• Relaxation theory predicts rise times of

(IVlojave desert, various Maeh numbers, l]ight attitudes, airplanes)
(rel hum _ 2,t%, T _ 33"C) right order of magnitude.

tO I i ........................
• " •. - Theoretical predictions of rise times tend to

i_ be lower than observed in field data.

,, • Strongdependenceofrelaxationtheoryrise
10.21 "a"s ,, • times on humidity.

tl llj m

rise _ -"$- • • Dry air leads to the longest rise times.
time ."_1,_._,"• *•
(see) QQ_N, •

10.._ .... . _'7" * For booms generated by next generation of

"."N civilian supersonic aircraft,

• _, \ nitrogen relaxation effects will be

\ much more important than
10,-I ...............

t0 lO0 10oo oxygen relaxation effects

pressure jump of l,_ading shock (Pa) • Rapidity with which waveform profiles

Solid line is theoretical prediction adjust to changes in humidity along flight
based on ass_mWiot, that . path is topic for further study
pressure of incident waveform is one-half of that
measured at the ground.


